Crystal Structure of the Neisseria gonorrhoeae MtrD Inner Membrane Multidrug Efflux Pump
نویسندگان
چکیده
Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. The MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here report the crystal structure of the inner membrane MtrD multidrug efflux pump, which reveals a novel structural feature that is not found in other RND efflux pumps.
منابع مشابه
Crystal Structure of the Open State of the Neisseria gonorrhoeae MtrE Outer Membrane Channel
Active efflux of antimicrobial agents is one of the most important strategies used by bacteria to defend against antimicrobial factors present in their environment. Mediating many cases of antibiotic resistance are transmembrane efflux pumps, composed of one or more proteins. The Neisseria gonorrhoeae MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux r...
متن کاملTripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump
The MtrCDE multidrug pump, from Neisseria gonorrhoeae, is assembled from the inner and outer membrane proteins MtrD and MtrE, which are connected by the periplasmic membrane fusion protein MtrC. Although it is clear that MtrD delivers drugs to the channel of MtrE, it remains unclear how drug delivery and channel opening are connected. We used a vancomycin sensitivity assay to test for opening o...
متن کاملStructural mechanisms of bacterial multidrug efflux pumps, their regulation, and implications for future research in silico
Evolution by natural selection and the overuse of antibiotics have led to the emergence and proliferation of drug-resistant bacteria. One of the mechanisms that bacteria have evolved to overcome antibiotics is the membrane efflux pump. By expelling the drugs outside of the cell, the bacterium prevents the molecule from accumulating to a toxic level. Transcriptional regulators, which control whe...
متن کاملImportance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae.
The contribution of drug efflux pumps in clinical isolates of Neisseria gonorrhoeae that express extensively drug-resistant or multidrug-resistant phenotypes has heretofore not been examined. Accordingly, we assessed the effect on antimicrobial resistance of loss of the three gonococcal efflux pumps associated with a known capacity to export antimicrobials (MtrC-MtrD-MtrE, MacA-MacB, and NorM) ...
متن کاملEvidence for the Assembly of a Bacterial Tripartite Multidrug Pump with a Stoichiometry of 3:6:3*
The multiple transferable resistance (mTR) pump from Neisseria gonorrhoeae MtrCDE multidrug pump is assembled from the inner and outer membrane proteins MtrD and MtrE and the periplasmic membrane fusion protein MtrC. Previously we established that while there is a weak interaction of MtrD and MtrE, MtrC binds with relatively high affinity to both MtrD and MtrE. MtrD conferred antibiotic resista...
متن کامل